Working with Data in R

Mauricio Romero
(Based on Nick C. Huntington-Klein's notes)

Working with Data

e R is all about working with datal
e data.frames:
e data.frames are an object type
e Most of the time, you'll be doing calculations using them

e Conceptually, data.frames are basically spreadsheets

e Technically, they're a list of vectors

data.frame

e |t's a collection of vectors of the same length

e (Note the use of = here, not <-)

df <- data.frame(
RacePosition = 1:5,

WayTheySayHi = as.factor(c(’Hi’,’Hello’,’Hey’,’Yo’,’Hi’)),
NumberofKids = ¢(3,5,1,0,2))
df

df <- data.frame(
RacePosition = 1:5,

WayTheySayH1 as.factor(c('Hi', 'Hello', "Hey','Yo',"Hi ")),
NumberofKids = <(3,5,1,0,2))

df
RacePosition WayTheySayHi NumberofKids

Hi

Hello
Hey
Yo
Hi

Looking Over Data

e Now that we have our data, how can we take a look at it?
e We name it in the Console and look at the whole thing

e Usually too much data

e Clicking on it in Environment to open it up

'a Class1R 'a Class2.R* - df

x| 7R Y Filter

RacePosition ~ WayTheySayHi ¥ Numberofkids ~
1 Hi B
)

2
3
4

Glancing at Data

e What if we just want a quick overview?

e Arrow in the Environment tab
e ‘head()’ (look at the head of the data - first six rows)

e ‘str()' (structure)

str (df)

> str(df)
'data.frame’: 5 obs. of 3 variables:
$ RacePosition: int 12 3 45

$ wayTheySayHi: Factor w/ 4 levels "Hello","Hey"
$ NumberofKids: num 3 51 0 2

What do we want to know about our data?

What is this data of ? (won't get that with 'str()")

Data types

The kinds of values it takes

How many observations

Variable names

e Summary statistics and observation level (we'll get to that later)

Getting at Data

e Now we have a data frame, ‘df'. How do we use it?
e We can pull the vectors back out with ‘$'! Note autocompletion of variable names.

e We can treat it just like the vectors we had before

df $NumberofKids
df $NumberofKids [2]
df $NumberofKids >= 3

10

df
RacePosition WayTheySayHi NumberofKids
Hi

\'%

Vview(df)

View(df)

View(df)

str(df)

'data.frame’: 5 obs. of 3 variables:
$ RacePosition: int 12 3 4 5
$ wayTheySayHi: Factor w/ 4 Tlevels "Hello","Hey",..: 312 4 3
$ NumberofKids: num 3 5 1 0 2

> df$NumberofKids

[1] 35102

> df$NumberofKids[2]

[1] 5

> df$NumberofKids >= 3

[1] TRUE TRUE FALSE FALSE FALSE

>

1
P
3
4
)
>
>
>
>

e There are actually many many ways to do this

o All these are equivalent:

df $NumberofKids >= 3
df [,3] >= 3
df [,’ NumberofKids’]>=3

12

> df$NumberofKids >= 3

[1] TRUE TRUE FALSE FALSE FALSE
> df[,3] >= 3

[1] TRUE TRUE FALSE FALSE FALSE

> df[, "NumberofKids']>=3

[1] TRUE TRUE FALSE FALSE FALSE
> |

13

We can run the same calculations on these vectors as we were doing before

mean (df $RacePosition)
df$WayTheySayHi [4]
sum (df $NumberofKids <= 1)

14

> mean(df$RacePosition)
[1] 3

> df$wayTheySayHi[4]
[1] Yo

Levels: Hello Hey Hi Yo

> sum(df$NumberofKids <= 1)
[1] 2

>

15

Create 'df2 <- data.frame(a = 1:20, b = 0:19*2," ‘c =
sample(101:200,20,replace=TRUE))'

What is the average of ‘c'?

What is the sum of ‘a‘ times ‘b‘?

Did you get any values of ‘c' 103 or below? (make a logical)

What is on the 8th row of ‘b‘?

How many rows have ‘b* above 10 AND ‘c' below 1507

16

Practice Answers

df2 <- data.frame(

a = 1:20,

b 0:19%2,

c sample (101:200,20,replace=TRUE))

mean (df2%$c)

sum (df2$a*xdf2$b)

sum (df2$c <= 103) > 0

df2$b[8]

sum (df2$b > 10 & df2$c < 150)

17

> df2 <- data.frame(

-+ 1:20,

+ 0:19%2,

+ sample(101:200,20, replace=TRUE))
>

> mean(df2$c)

[1] 147.55

>

> sum(df2%$a*df2$b)

[1] 5320

>

> sum(df2%$c <= 103) > O
[1] TRUE

>

> df2$b[8]

[1] 14

>

> sum(df2$b > 10 & df2%c < 150)

The Importance of Rows

So far we've taken data frames and pulled the vectors (columns) back out

So... why not just stick with the vectors?

We're not just interested in the columns one at a time

We want to keep track of how the row (an observation)

Goal: How do variables (columns) relate to each other for the same observation
(row)

19

The Importance of Rows

e Going back to ‘df’, that fourth row says that

e The person in the fourth position...
e Says hello by saying " Yo"

e And has no kids

e |s there a relationship between having kids and your position in the race?

e Or a relationship between the number of kids relates to how you say hello?

20

Working With Data Frames

e We can manipulate data frames!

e Let's figure out how we can:

e Create new variables

e Change variables

e Rename variables
e |t's very common that you'll have to work with data a little before analyzing it
e ‘“data cleaning” is super important and a big part of statistical analysis

21

Creating New Variables

e data.frames are just lists of vectors
e So create a vector and tell R where in that list to stick it!

e Use descriptive names so you know what the variable is

df$State <- c(’Alaska’,’California’,
’California’,’Maine’,
>Florida’)

df

22

> df§state <- c('Alaska’, 'california’,
'california’, '"Maine"',
'Florida")

df

RacePosition WayTheySayHi NumberofKids State

Hi
Hello
Hey
Yo

Hi

3 Alaska
5 california
1 california
(0] Maine
P Florida

23

Another approach - DPLYR and Tidyverse

e We just saw the base-R way to do it
e Can use dplyr (data pliers) for data manipulation instead
e dplyr syntax is inspired by SQL
e Learning dplyr will give you a leg up if you want to learn SQL later

e Plus some people find it more intuitive/better

24

e tidyverse isn't a part of base R. It's in a package, so we'll need to install it

e We can install packages using ‘install.packages('nameofpackage’)’

install.packages (’tidyverse’)

e We can then check whether it's installed in the Packages tab

23

Before we can use it we must then use the ‘library()' command to open it up

Need to run ‘library()' every time we open up R if we want to use the package

library(tidyverse)

There are thousands of useful packages for R, and we're going to be using a few!

tidyverse will just be our first of many

Google R package “X" to look for packages that do “X”"

26

Variable creation with dplyr

e The mutate command will “mutate” our data frame to have a new column in it
e The pipe '%>%" says “take df and send it to that mutate command to use”

e Or we can stick the data frame itself in the ‘mutate’ command

e Thus these two are equivalent:

library(tidyverse)

df1 <- df %>% mutate(State = c(’Alaska’,’California’,
’California’,’Maine’,’Florida’))

df2 <- mutate(df,State = c(’Alaska’,’California’,
’California’,’Maine’,’Florida’))

identical (df1,df2)

df <- df1i
27

#Creating a new variable with mutate/tidiverse

dfl <- df mutate(State = c('Alaska', 'california’,
'california’, 'Maine', 'Florida'))

df2 <- mutate(df,state = c('Alaska', 'california’,
'california', 'Maine', 'Florida'))

>
>
>
>
+
>
>
+
>

> identical(dfl,df2)
[1] TRUE
>

28

Creating New Variables

o We can use all the tricks we already know about creating vectors

e We can create multiple new variables in one mutate command

df <- df %>% mutate(
MoreThanTwoKids = NumberofKids > 2,

One = 1,
KidsPlusPosition = NumberofKids + RacePosition)
df

29

df <- df %% mutate(
MoreThanTwoKids = Numberofkids > 2,
One = 1,
KidsPlusPosition = NumberofKids + RacePosition)

df
RacePosition WayTheySayHi NumberofKids State

1 Hi 3 Alaska
P Hello 5 california
3 Hey 1 california
4 Yo 0 Maine
5 Hi 2 Florida

MoreThanTwoKids One KidsPlusPosition
TRUE
TRUE
FALSE
FALSE
FALSE

30

Manipulating Variables

e We can't really change variables, but we can overwrite them!

e We can drop variables with ‘-* in the dplyr ‘select’ command

e Note we chain multiple dplyr commands with ‘%>%"

df <- df %>%
select (-KidsPlusPosition ,-WayTheySayHi ,-0ne) %>%

mutate (State = as.factor(State),
RacePosition = RacePosition - 1)
df$State[3] <- ’Alaska’
str (df)

31

>

#manipulating some variables
df <- df %%
select(-KidsPlusPosition,-WayTheySayHi,-0One) %>%
mutate(State = as.factor(State),
RacePosition = RacePosition - 1)
dff$state[3] <- 'Alaska'
str(df)

data.frame': 5 obs. of 4 variables:
$ RacePosition :num 01234
$ Numberofkids :num 35102
$ State : Factor w/ 4 levels "Alaska","california",..:
$ MoreThanTwoKids: Togi TRUE TRUE FALSE FALSE FALSE

12143

32

Renaming Variables

e Sometimes it will make sense to change the names of the variables we have.
e Names are stored in ‘names(df)‘ which we can edit directly

e Or the ‘rename()' command in dplyr has us covered

names (df)
#two ways of renaming
#names (df) <- c(’Pos’,’Num.Kids’,’State’,’mt2Kids’)

df <- df %>% rename(Pos = RacePosition, Num.Kids=NumberofKids,

mt2Kids = MoreThanTwoKids)

names (df)

83

> #Renaming variaables

> names (df)

[1] "RacePosition" "NumberofKids" "State" "MoreThanTwoKids"
> #two ways of renaming

>
#names (df) <- c('Pos', 'Num.Kids', 'State', 'mt2Kids"')

df <- df %% rename(Pos RacePosition, Num.Kids=NumberofKids
mt2Kids = MoreThanTwoKids)

"Num.Kids" "state" "mt2Kids"

34

IIiiHHEHiHEII

e Create a data set ‘data’ with three variables: ‘a‘ is all even numbers from 2 to 20,
‘b" is ‘c(0,1)" over and over, and ‘c' is any ten-element numeric vector of your
choice.

e Rename them to ‘EvenNumbers’, ‘Treatment’, ‘Outcome’.

e Add a logical variable called Big that's true whenever EvenNumbers is greater
than 15

e Increase Outcome by 1 for all the rows where Treatment is 1.

e Create a logical AboveMean that is true whenever Outcome is above the mean of
Outcome.

e Display the data structure

85

Practice Answers

data <- data.frame(a = 1:10%2,
b = ¢c(0,1),
c = sample(1:100,10,replace=FALSE)) %>%
rename (EvenNumbers = a, Treatment = b, Outcome = c)
data <- data %>%
mutate (Big = EvenNumbers > 15,
Outcome = Outcome + Treatment,
AboveMean = Outcome > mean(Outcome))

str (data)

36

> #Some practice

> data <- data.frame(a

Outco

str(data)
data.frame':

$ EvenNumbers:
$ Treatment
$
$
$

I
B
I
>
>
B
o
B
>
>
v

Ooutcome
Big
AboveMean

data <- data %%
mutate(Big = EvenNumbers > 15,

me =

b
c sample(1:100,10, replace=FALSE)) %>%

rename (EvenNumbers a, Treatment = b, Outcome = c)

Outcome + Treatment,

AboveMean = Outcome > mean(Outcome))

10 obs. of 5 variables:

num
num
num
logi
logi

2 4681012 14 16 18 20
0101010101
44 61 29 33 58 37 48 80 97 50

FALSE FALSE FALSE FALSE FALSE FALSE ...

FALSE TRUE FALSE FALSE TRUE FALSE ...

37

Other Ways to Get Data

Of course, most of the time we aren’'t making up data

We get it from the real world!

Two main ways to do this are the ‘data()" function in R

Or reading in files, usually with one of the ‘read’ commands like ‘read.csv()'

38

R has many baked-in data sets, and more in packages!

e Just type in ‘data(’ and see what options it autocompletes
e We can load in data and look at it

e Many of these data sets have ‘help’ files too

data(LifeCycleSavings)
help(LifeCycleSavings)
head(LifeCycleSavings)

39

LifeCycleSavings {datasets}

Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960-1970.

Usage

Lif

Format

A data frame with 50 observations on 5 variables.

[1]sr numeric aggregate personal savings

[,2] pop15 numeric % of population under 15

[,3]1 pop75 numeric % of population over 75

[,4] dpi numeric real per-capita disposable income
[.5]ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio (aggregate personal saving divided by disposable income) is
explained by per-capita disposable income, the percentage rate of change in per-capita disposable income, and two demographic variables: the percentage of
population less than 15 years old and the percentage of the population over 75 years old. The data are averaged over the decade 19601970 to remove the
business cycle or other short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the data from Sterling (1977).

> data(LifeCycleSavings)
> help(LifeCyclesavings)
> head(LifeCycleSavings)

sr popl5 pop75
Australia 11.43 29.35 .87
Austria 12.07 23.32 .41

Belgium 13.17 23.80 .43
Bolivia 5.75 41.89 .67
Brazil 12.88 42.19 .83
Canada 8.79 31.72 .85
> |

e Often there will be data files on the internet or your computer

e You can read this in with one of the many ‘read’ commands, like ‘read.csv’
e ‘“csv' is a very basic spreadsheet format stored in a text file
e You can create it from Excel or Sheets (or just write it)

e There are different ‘read' commands for different file types
o Make sure your working directory is set to where the data is
e Tell R what the path is!

”

Use “setwd(‘mypath’)

See example at the top of the .R files | posted
e Can also read data from an url directly

e Documentation will usually be in a different file

datafromCSV <- read.csv(’mydatafile.csv’)

42

e Use ‘data()’ to open up a data set

e Any data set that is a ‘data.frame’

e Try again if you get something else

Use ‘str()' and ‘help()' to examine that data set

What is it data of (help file)? How was it collected and what are the variables?

What kinds of variables/values do they have (‘str()‘ and ‘head()')?

Create a new variable using the variables that are already in there

Take a mean of one of the variables

e Rename a variable to be more descriptive based on what you saw in ‘help()".

43

Construct ‘data.frame's by making them with ‘data.frame()’, or reading in data

with ‘data()" or ‘read.csv’

‘data.frame’s are a list of vectors - we know vectors!

We can pull the vectors back out with ‘$*

e We can assign new variables, or update them, using ‘$* as well

44

Subsetting your data

Selecting only part of the data that we have (i.e., subset the data)

Why would we want to do this?

We might be interested in how a variable differs for two different groups

Or how one variable is related to another

Or how those relationships differ for different groups

We might only be interested in a particular group

45

Subset

‘filter()* and ‘select()* allow you to pick certain parts of your data
You can select certain rows/observations using logicals with ‘filter()’
And you can select certain columns/variables with ‘select()’

The syntax is:

data.frame %>} filter(logical.for.rows)
filter (data.frame, logical.for.rows)
data.frame %>} select(variables,you,want)

select (data.frame,variables ,you,want)

46

e Let's read in some data on pollution in CDMX
e Mexico has lots of open data sources

e Mexico city pollution: http://www.aire.cdmx.gob.mx/

e Mexico city crime: https://datos.cdmx.gob.mx/explore/dataset/
carpetas-de-investigacion-pgj-cdmx/

e More open data CDMX: https://datos.cdmx.gob.mx/pages/home/
e More open data Mexico: https://datos.gob.mx/

A lot of cool data can be

‘webscrapped” or requested to INAI

47

http://www.aire.cdmx.gob.mx/
https://datos.cdmx.gob.mx/explore/dataset/carpetas-de-investigacion-pgj-cdmx/
https://datos.cdmx.gob.mx/explore/dataset/carpetas-de-investigacion-pgj-cdmx/
https://datos.cdmx.gob.mx/pages/home/
https://datos.gob.mx/

df <- read.csv(
http://www.aire.cdmx.gob.mx/opendata/red_manual/red_manual_particulas_susp.csv’,
skip=8)

str (df)

df$Date=as.Date(df$Date,format="%d/%m/%Y") #convert date, to date format

48

#Download pollut
df <- read.csv('
s

str(df)
ata.frame': 37

Date
cve_station
cve_paramete
value

unit

ion
htt
kip:

715

: chr
: chr

chr
int

:int

data
/www.aire.cdmx.gob.mx/opendata/red_manual/red_manual_particulas_susp.csv',
,stringsAsFactors = F) #skip first 8 lines (how do I know 8 Tlines, open the original csv and check it out)

obs. of 5 variables:

"02/01/1989" "02/01/1989" "02/01/1989" "02/01/1989" ...
"CES" "MER" "PED" "TLA" .

"pM10" "PM10" "PM10" "PML

258 142 95 164 249 304 163 91 177 288 ...
2222222222

49

e Always look at the data before you use it!
e |t has date as a string, but R has a special “date” data type

e More info on the data at https://tinyurl.com/y6mhmo6f

50

https://tinyurl.com/y6mhmo6f

There is data for TSP, PM2.5 and PM10. What are thse? See the "‘catalogo de
parametros”
Let's keep the data only for PM10

#these produce the same result

dfsubl <- df %>% filter (cve_parameter %in% c(’PM10°))
dfsub2 <- df [df$cve_parameter==’>PM10°,]

dfsub <- dfsubl

What is the mean PM107
How many observations do we have per station?

#what is the mean of PM107

mean (dfsub$value)

#how many observations per station?
table (dfsub$cve_station)

51

#Keep only Pml0 -- Two ways to do it

dfsubl <- df %>% filter(cve_parameter %in% c('PM10"))

dfsub2 <- df[df$cve_parameter=="PM10',]
#0k Tlets just keep one of them
dfsub <- dfsubl
#what is the mean of PM10?
> mean(dfsub$value)

[1] 64.41394
> #how many observations per station?
> table(dfsub$cve_station)

CES HAN LOM LPR MCM MER NEZ PED SHA
1355 248 1164 1117 265 1834 1283 1802 902
>

TLA
1848

UIZ XAL XCH
1232 1816 124

52

e If we limit the data just to the station in Pedregal (PED), what's the mean?

mean(filter (df ,cve_station %in’% c(’PED’))$value)

e What if we want to compare the stations to each other? We need to split off each
station by itself

dfsub <- df %>), group_by(cve_station) %>%

summarize (PM10 = mean(value))

53

> mean(filter(dfsub,cve_station %in% c('PED'))$value)
[1] 42.45061

#Mean by station

dfsub <- dfsub %>% group_by(cve_station) %>%

summarize(PM10 = mean(value))
View(dfsub)
View(dfsub)

54

o What if we want to compare the evolution across time

date_mean <- df %>} group_by(Date) %>%
summarize (PM10 = mean(value))

plot (date_mean,type="1")

55

PM10

250

200

150

100

50

1990

T
1995

T
2000

T
2005

Date

T
2010

T
2015

T
2020

56

e What questions does this answer?

e What is average pollution by location?

e How does average pollution evolve across time?

e What can’t we answer yet?

e What causes these differences across time and place [later!]

57

e Let's start by selecting rows from our data

e We do this by creating a logical

e ‘filter' will choose all the observations for which that logical is true!

e Here's a logical to pick the 4 stations: ‘cve_station %in%
c('TLA’,'PED’,'MER’,"XAL")’

e This will be equal to ‘“TRUE' if the ‘cve_station' variable is ‘%in%" that list of four
stations | gave

df1<- dfsub %>J% filter(cve_station %in% c(’TLA’,’PED’,’MER’,’XAL’))
df2 <- dfsub[dfsub$cve_station %in% c(’TLA’,’PED’,’MER’,’XAL’),]
identical (df1,df2)

58

e Subsetting for variables is easy! Just use ‘select()‘ with a vector or list of variables
you want!

e Or you can do ‘-' a vector of variables you DON'T want!

e We don't need “unit”, let's get rid of it

str(df %>/ select(Date,cve_station,cve_parameter ,value,Year))
str(df %>% select(-c(unit)))

59

e We can do both at the same time, chaining one to the other

df %>% filter (Date == as.Date("2018-05-02",format="%Y-%m-%d")) %>%

select (Date,cve_station,value)

60

Compare the changes over time across stations

#Lets just keep 4 stations, the ones with the most data

dfsub <- dfsub %>% filter(cve_station %in% c(’TLA’,’PED’,’MER’,’XAL’))
#Create a month-year indicator

dfsub$Year <- as.numeric(format (as.Date(dfsub$Date), "%Y"))
dfsub$Month <- as.numeric(format(as.Date(dfsub$Date), "%m"))
dfsub$Year _Month=dfsub$Year +dfsub$Month/12

#Keep only data from 2010 onward, and summarize by month/year and station
dfsub_my <- dfsub %>%

filter (Date>=as.Date("2010-01-01",format="%Y-%m-%d")) %>%

group_by(Year _Month,cve_station) %>%

summarize (PM10 = mean(value))

#plot

ggplot (dfsub_my,aes (y=PM10,x=Year _Month,group=cve_station,color=cve_station))+
geom_line (aes(linetype=cve_station))+
geom_point (aes (shape=cve_station, color=cve_station))+
ggtitle ("PM10 over time")+

ylab("Micrograms per cubic meter")+ theme_classic () -

PM10 over time

c
2
g
7]
g
]

~ MER
-+ PED

- TLA
XAl

2015.0 2017.5 2020.0

Year_Month

2012.5

150

00

S
118w 21gn9 Jad sweifoidin

50

2010.0

62

Subsetting reveals a more complete story than looking at the aggregated data!

So how can we do this subsetting?

There are plenty of ways

For today we focused on the ‘filter()" and ‘select()’ commands

63

e Get the dataset ‘mtcars’ using the ‘data()' function

e Look at it with ‘str()' and ‘help()’

e Limit the dataset to just the variables ‘mpg, cyl’, and ‘hp’

e Get the mean ‘hp’ for cars at or above the median value of ‘cyl’

e Get the mean ‘hp' for cars below the median value of ‘cyl’

e Do the same for ‘mpg" instead of ‘hp'

e Calculate the difference between above-median and below-median ‘mpg’ and ‘hp’

e How do you interpret these differences?

64

Practice answers

data(mtcars)
help(mtcars)
str(mtcars)

mtcars <- mtcars %>} select(mpg,cyl,hp)

mean (filter (mtcars,cyl >= median(cyl))$hp)
mean(filter (mtcars,cyl < median(cyl))$hp)

mean(filter (mtcars,cyl>=median(cyl))$hp)-
mean (filter (mtcars,cyl<median(cyl))$hp)

mean (filter (mtcars,cyl >= median(cyl))$mpg)
mean(filter (mtcars,cyl < median(cyl))$mpg)

mean (filter (mtcars,cyl>=median(cyl))$mpg)-
mean (filter (mtcars,cyl<median(cyl))$mpg)
65

